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2. Some Mathematical Preliminaries

Exercise 2.1
Suppose that 𝑋 : Ω → ℝ is a function which takes only countably many values 𝑎1, 𝑎2, . . . ∈ ℝ.

(a) Show that 𝑋 is a random variable if and only if

𝑋−1(𝑎𝑖) ∈ F for all 𝑖 ∈ ℕ.

(b) Suppose that 𝑋 is a random variable. Show that

𝐸 [|𝑋 |] =
∞∑︁
𝑖=1

|𝑎𝑖 | 𝑃(𝑋 = 𝑎𝑖).

(c) If 𝑋 is a random variable and 𝐸 [|𝑋 |] < ∞, show that

𝐸 [𝑋] =
∞∑︁
𝑖=1

𝑎𝑖𝑃(𝑋 = 𝑎𝑖).

(d) If 𝑋 is a random variable and 𝑓 : ℝ→ ℝ is measurable and bounded, show that

𝐸 [ 𝑓 (𝑋)] =
∞∑︁
𝑖=1

𝑓 (𝑎𝑖)𝑃(𝑋 = 𝑎𝑖).

Solution.
For (a), suppose first that 𝑋 is a random variable. Since {𝑎𝑖} are Borel sets, 𝑋−1(𝑎𝑖) ∈ F

for all 𝑖 ∈ ℕ. Conversely, assume that 𝑋−1(𝑎𝑖) ∈ F for all 𝑎𝑖. Since the range of 𝑋 is {𝑎𝑖}𝑖∈ℕ,
for any Borel set 𝐵 ⊂ ℝ, 𝑋−1(𝐵) = ⋃

𝑎𝑖∈𝐵 𝑋−1(𝑎𝑖) ∈ F , by the definition of 𝜎-algebra. Thus,
𝑋 is a random variable.

For (b), since 𝑋 takes only countably many values, so does |𝑋 | with {|𝑎𝑖 |}𝑖∈ℕ. By the
definition of expectation, we have

𝐸 [|𝑋 |] =
∞∑︁
𝑖=1

|𝑎𝑖 | 𝑃(𝑋 = 𝑎𝑖)

in the extended sense.
For (c), since 𝐸 [|𝑋 |] < ∞ and 𝑋 is a random variable, the series converges absolutely

and is well-defined. Hence

𝐸 [𝑋] =
∞∑︁
𝑖=1

𝑎𝑖𝑃(𝑋 = 𝑎𝑖).

For (d), since 𝑓 is measurable, 𝑓 −1(𝐵) is Borel and 𝑋−1 𝑓 −1(𝐵) is measurable. 𝑓 (𝑋) takes
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only countably many values, 𝑓 (𝑎1), 𝑓 (𝑎2), . . .. The definition of expectation gives us

𝐸 [ 𝑓 (𝑋)] =
∞∑︁
𝑖=1

𝑓 (𝑎𝑖)𝑃( 𝑓 (𝑋) = 𝑓 (𝑎𝑖)) =
∞∑︁
𝑖=1

𝑓 (𝑎𝑖)𝑃(𝑋 = 𝑎𝑖).

Exercise 2.2
𝑋 : Ω → ℝ is a random variable. The distribution function 𝐹 of 𝑋 is defined as

𝐹 (𝑥) = 𝑃(𝑋 ≤ 𝑥).

(a) Prove that 𝐹 has the following properties:

(i) 0 ≤ 𝐹 ≤ 1, lim𝑥→−∞ 𝐹 (𝑥) = 0 and lim𝑥→∞ 𝐹 (𝑥) = 1.

(ii) 𝐹 is non-decreasing.

(iii) 𝐹 is right-continuous.

(b) 𝑔 : ℝ→ ℝ is measurable such that 𝐸 [|𝑔(𝑋) |] < ∞. Show that

𝐸 [𝑔(𝑋)] =
∫ ∞

−∞
𝑔(𝑥)𝑑𝐹 (𝑥).

(c) Let 𝑝(𝑥) ≥ 0 be measurable on ℝ be the density of 𝑋, i.e.,

𝐹 (𝑥) =
∫ 𝑥

−∞
𝑝(𝑡)𝑑𝑡.

Find density of 𝐵2
𝑡 .

Solution.
For (a), since 𝑃 is a probability measure, 0 ≤ 𝑃(𝑆) ≤ 1 for any 𝑆 ∈ F . In particular,

0 ≤ 𝑃(𝑋 ≤ 𝑥) ≤ 1 for all 𝑥 ∈ ℝ. Also, we can take 𝑥𝑛 ↘ −∞ and |𝑋 ≤ 𝑥𝑛 | ↘ ∅ as 𝑛 → ∞.
Hence

lim
𝑥→−∞

𝐹 (𝑥) = lim
𝑛→∞

𝑃(𝑋 ≤ 𝑥𝑛) = 𝑃(∅) = 0.

Similarly, we can take 𝑥𝑛 ↗ ∞ and |𝑋 ≤ 𝑥𝑛 | ↗ Ω as 𝑛 → ∞. Hence

lim
𝑥→∞

𝐹 (𝑥) = lim
𝑛→∞

𝑃(𝑋 ≤ 𝑥𝑛) = 𝑃(Ω) = 1.

(i) is proved. For (ii), 𝐹 is non-decreasing because if 𝑥1 < 𝑥2, then

𝐹 (𝑥1) = 𝑃(𝑋 ≤ 𝑥1) ≤ 𝑃(𝑋 ≤ 𝑥2) = 𝐹 (𝑥2).

For (iii), let ℎ > 0.

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) = 𝑃(𝑋 ≤ 𝑥 + ℎ) − 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑥 < 𝑋 ≤ 𝑥 + ℎ).
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For any 𝑦 > 𝑥, there exists ℎ > 0 such that 𝑦 > 𝑥 + ℎ. Thus (𝑥, 𝑥 + ℎ] ↘ ∅ as ℎ → 0. Hence

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) = 𝑃(𝑥 < 𝑋 ≤ 𝑥 + ℎ) → 𝑃(∅) = 0

as ℎ → 0. Therefore, 𝐹 is right-continuous.
For (b), by definition of expectation, the left-hand side is

𝐸 [𝑔(𝑋)] =
∫
ℝ

𝑔(𝑥)𝑑𝜇𝑋 (𝑥),

where 𝜇𝑋 (𝐵) = 𝑃(𝑋−1(𝐵)) for any Borel set 𝐵 ⊂ ℝ.
For (c),

𝐹 (𝑥) = 𝑃(𝐵2
𝑡 ≤ 𝑥) = 𝑃(𝐵𝑡 ≤

√
𝑥) =

∫ √
𝑥

−∞

1
√

2𝜋𝑡
exp

(
−𝑢

2

2𝑡

)
𝑑𝑢.

Hence,
𝑝(𝑢) = 𝑑

𝑑𝑥
𝐹 (𝑥) = 1

√
2𝜋𝑡

exp
(
− 𝑥

2𝑡

) 1
2
√
𝑥
.

Exercise 2.3
Let {F𝑖}𝑖∈I be a collection of 𝜎-algebras on Ω. Prove that

F =
⋂
𝑖∈I

F𝑖

is again a 𝜎-algebra.

Solution.
First, since F𝑖 are 𝜎-algebras, they contain ∅ and hence ∅ ∈ F . For any 𝐴 ∈ F , 𝐴 ∈ F𝑖 for

all 𝑖 ∈ I and hence 𝐴𝑐 ∈ F𝑖 for all 𝑖 ∈ I. Thus 𝐴𝑐 ∈ F . Finally, for any countable collection
{𝐴𝑛}𝑛∈ℕ ⊂ F , we have 𝐴𝑛 ∈ F𝑖 for all 𝑖 ∈ I and all 𝑛 ∈ ℕ. Then

⋃
𝑛 𝐴𝑛 ∈ F𝑖 for all 𝑖 ∈ I.

Hence
⋃

𝑛 𝐴𝑛 ∈ F . Therefore, F is a 𝜎-algebra.

Exercise 2.4

(a) Let 𝑋 : Ω → ℝ be a random variable such that 𝐸 [|𝑋 |𝑝] < ∞ for some 𝑝 ∈ (0,∞). Prove
the Chebyshev’s inequality:

𝑃(|𝑋 | ≥ 𝜆) ≤ 1
𝜆𝑝

𝐸 [|𝑋 |𝑝]

for any 𝜆 > 0.

(b) Suppose there exists 𝑘 > 0 such that 𝑀 = 𝐸 [exp(𝑘 |𝑋 |)] < ∞. Prove that 𝑃( |𝑋 | ≥ 𝜆) ≤
𝑀𝑒−𝑘𝜆 for any 𝜆 > 0.

Solution.
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For (a), directly estimate that

𝑃(|𝑋 | ≥ 𝜆) =
∫
Ω

𝜒{|𝑋 |𝑝≥𝜆𝑝}𝑑𝑃 ≤
∫
Ω

|𝑋 |𝑝

𝜆𝑝
𝑑𝑃 =

1
𝜆𝑝

𝐸 [|𝑋 |𝑝] .

(b) is similar:

𝑃(|𝑋 | ≥ 𝜆) =
∫
Ω

𝜒{exp(𝑘 |𝑋 |)≥exp(𝑘𝜆)}𝑑𝑃 ≤
∫
Ω

exp(𝑘 |𝑋 |) exp(−𝑘𝜆)𝑑𝑃 = 𝑀 exp(−𝑘𝜆).

Exercise 2.5
Let 𝑋,𝑌 : Ω → ℝ be two independent random variables and assume for simplicity that 𝑋,𝑌
are bounded. Prove that

𝐸 [𝑋𝑌 ] = 𝐸 [𝑋] 𝐸 [𝑌 ] .

Solution.
For any 𝜖 > 0, by definition of the expectation, we can find simple functions 𝑠 and 𝑡 on Ω

such that∫
|𝑠 − 𝑋 | 𝑑𝑃 < 𝜖,

∫
|𝑡 − 𝑌 | 𝑑𝑃 < 𝜖, ⇒

����𝐸 [𝑋] −
∫

𝑠𝑑𝑃

���� < 𝜖,

����𝐸 [𝑌 ] −
∫

𝑡𝑑𝑃

���� < 𝜖,

where 𝑠 and 𝑡 can be written as

𝑠 =

𝑛∑︁
𝑖=1

𝑠𝑖𝜒𝑋−1 [𝑠𝑖 ,𝑠𝑖+1) and 𝑡 =

𝑚∑︁
𝑗=1

𝑡 𝑗 𝜒𝑌−1 [𝑡 𝑗 ,𝑡 𝑗+1) ,

with 𝑠𝑖 and 𝑡 𝑗 being arranged in ascending order. Thus,∫
𝑠𝑡𝑑𝑃 =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑠𝑖𝑡 𝑗𝑃({𝑋 ∈ [𝑠𝑖, 𝑠𝑖+1)} ∩
{
𝑌 ∈ [𝑡 𝑗 , 𝑡 𝑗+1)

}
)

=

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑠𝑖𝑡 𝑗𝑃(𝑋 ∈ [𝑠𝑖, 𝑠𝑖+1))𝑃(𝑌 ∈ [𝑡 𝑗 , 𝑡 𝑗+1))

=

(
𝑛∑︁
𝑖=1

𝑠𝑖𝑃(𝑋 ∈ [𝑠𝑖, 𝑠𝑖+1))
)©«

𝑚∑︁
𝑗=1

𝑡 𝑗𝑃(𝑌 ∈ [𝑡 𝑗 , 𝑡 𝑗+1))ª®¬ =

(∫
𝑠𝑑𝑃

) (∫
𝑡𝑑𝑃

)
.

Also, ����𝐸 [𝑋𝑌 ] −
∫

𝑠𝑡𝑑𝑃

���� ≤ ����∫ |𝑋 − 𝑠 | |𝑡 | 𝑑𝑃
���� + ����∫ |𝑌 − 𝑡 | |𝑋 | 𝑑𝑃

���� .
𝑋 and 𝑌 are bounded, say by 𝑀 and 𝑁 respectively. Then 𝑡 is also bounded by 𝑁 from our
construction. Thus ����𝐸 [𝑋𝑌 ] −

∫
𝑠𝑡𝑑𝑃

���� ≤ 𝑀𝜖 + 𝑁𝜖.
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Combine the results above, we arrive at

|𝐸 [𝑋𝑌 ] − 𝐸 [𝑋] 𝐸 [𝑌 ] | ≤
����𝐸 [𝑋𝑌 ] −

∫
𝑠𝑡𝑑𝑃

���� + ����𝐸 [𝑋] 𝐸 [𝑌 ] −
∫

𝑠𝑑𝑃

∫
𝑡𝑑𝑃

����
≤ (𝑀 + 𝑁)𝜖 +

����𝐸 [𝑋] −
∫

𝑠𝑑𝑃

���� ����∫ 𝑡𝑑𝑃

���� + ����𝐸 [𝑌 ] −
∫

𝑡𝑑𝑃

���� |𝐸 [𝑋] |

≤ (𝑀 + 𝑁)𝜖 + 𝜖𝑁 + 𝜖𝑀.

Since 𝜖 is arbitrary, we conclude that 𝐸 [𝑋𝑌 ] = 𝐸 [𝑋] 𝐸 [𝑌 ].

Exercise 2.6
Let (Ω, F , 𝑃) be a probability space and 𝐴1, . . . ∈ F be sets such that

∞∑︁
𝑖=1

𝑃(𝐴𝑖) < ∞.

Prove the Borel-Cantelli lemma:

𝑃

( ∞⋂
𝑚=1

∞⋃
𝑖=𝑚

𝐴𝑖

)
= 0.

Solution.
Set 𝐵𝑚 =

⋃∞
𝑖=𝑚 𝐴𝑖 be measurable. Then

𝑃(𝐵𝑚) ≤
∞∑︁
𝑖=𝑚

𝑃(𝐴𝑖) → 0

as 𝑚 → ∞ by the assumption. Thus

𝑃

( ∞⋂
𝑚=1

𝐵𝑚

)
≤ lim

𝑛→∞
𝑃

(
𝑛⋂

𝑚=1
𝐵𝑚

)
≤ lim

𝑛→∞
𝑃(𝐵𝑛) = 0.

Exercise 2.7

(a) Suppose 𝐺1, . . . , 𝐺𝑛 are disjoint sets in F such that
⋃𝑛

𝑖=1 𝐺𝑖 = Ω. Prove that the family

G = {𝐺 | 𝐺 is a union of some 𝐺𝑖} ∪ {∅}

is a 𝜎-algebra.

(b) Prove that every finite 𝜎-algebra is of type G as in (a).

(c) Let F be a finite 𝜎-algebra on Ω and 𝑋 : Ω → ℝ be F -measurable. Prove that 𝑋 is
simple.

Solution.

6



For (a), first, ∅ ∈ G by definition. Let 𝐺 ∈ G. Then 𝐺 = ∪𝑖∈I𝐺𝑖 for some I ⊂ {1, . . . , 𝑛},
with the convention that ∪𝑖∈∅𝐺𝑖 = ∅. Then 𝐺𝑐 =

⋃
𝑖∉I 𝐺𝑖 ∈ G. Lastly, for countably many

𝐺𝑖 ∈ G, since G is finite, there are in fact finitely many distinct 𝐺𝑖 and the union must lie in
G by the definition. Hence G is a 𝜎-algebra.

For (b), let F be a finite 𝜎-algebra. Consider the collection

S = {𝑆 ∈ F | 𝑆 ∩ 𝐹 = ∅ or 𝑆 for all 𝐹 ∈ F } .

Since F is finite, S is also finite. We first check that every distinct sets in S are disjoint.
Suppose not. There are 𝑆1, 𝑆2 ∈ S such that 𝑆1 ∩ 𝑆2 is non-empty. Then 𝑆1 ∩ 𝑆2 = 𝑆1 = 𝑆2,
contradicting the assumption that 𝑆1 and 𝑆2 are distinct. Thus every distinct sets in S are
disjoint. Next, we check that

⋃
𝑆∈S 𝑆 = Ω. If not, let 𝐴 = Ω \⋃

𝑆∈S 𝑆 be non-empty and 𝐴 ∩ 𝐹

is a non-empty proper subset of 𝐴 for some 𝐹 ∈ F . But then 𝐴∩ 𝐹 or 𝐴∩ 𝐹𝑐 must satisfy the
condition that there is some 𝐹′ ∈ F such that 𝐴 ∩ 𝐹 ∩ 𝐹′ or 𝐴 ∩ 𝐹𝑐 ∩ 𝐹′ is non-empty, proper
subset of 𝐴 ∩ 𝐹 or 𝐴 ∩ 𝐹𝑐 respectively. Note that 𝐹′ ≠ 𝐹 and the process continues. In the
end, we can find a infinite sequence of distinct sets lying in F , contradicting the finiteness
of F . Thus

⋃
𝑆∈S 𝑆 = Ω. Finally, by (a),

G = {𝐺 | 𝐺 is a union of some 𝑆 ∈ S} ∪ {∅}

is a 𝜎-algebra. It remains to show that G = F . Clearly, G ⊂ F since S ⊂ F . For any 𝐹 ∈ F ,
we can write 𝐹 =

⋃𝑛
𝑖=1 𝑆𝑖 for some 𝑆𝑖 ∈ S. Thus 𝐹 ∈ G. We end up with G = F .

For (c), suppose that 𝑋 can take infinitely many values {𝑎𝑖}𝑖∈I . Since 𝑋 is F -measurable,
𝑋−1({𝑎𝑖}) ∈ F for all 𝑖 ∈ I. In particular, 𝑋−1({𝑎𝑖}) and 𝑋−1(

{
𝑎 𝑗

}
) are disjoint for all 𝑖 ≠ 𝑗 .

This implies that F contains infinitely many disjoint sets, contradicting the finiteness of F .
Thus 𝑋 can only take finitely many values and is simple.

Exercise 2.8
Let 𝐵𝑡 be Brownian motion on ℝ, 𝐵0 = 0. Put 𝐸 = 𝐸0.
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